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Figure 1: Overview of the precision-conditioned control framework for long-horizon, dexterous
surgical tasks. Image observations are processed by a high-level language policy, which selects
the current task and generates the associated language condition. The user specifies target needle
insertion and exit points via a graphical interface, which is used to generate the goal condition. These
inputs, language condition, goal condition, and real-time kinematic data, are then processed by the
low-level policy to produce precise, continuous control commands for the robot.

Abstract

Robotic suturing is a prototypical long-horizon dexterous manipulation task, re-
quiring coordinated needle grasping, precise tissue penetration, and secure knot
tying. Despite numerous efforts toward end-to-end autonomy, a fully autonomous
suturing pipeline has yet to be demonstrated on physical hardware. We intro-
duce SutureBot: an autonomous suturing benchmark on the da Vinci Research
Kit (dVRK), spanning needle pickup, tissue insertion, and knot tying. To ensure
repeatability, we release a high-fidelity dataset comprising 1,890 suturing demon-
strations. Furthermore, we propose a goal-conditioned framework that explicitly
optimizes insertion-point precision, improving targeting accuracy by 59%-74%
over a task-only baseline. To establish this task as a benchmark for dexterous imi-
tation learning, we evaluate state-of-the-art vision-language-action (VLA) models,
including π0, GR00T N1, OpenVLA-OFT, and multitask ACT, each augmented
with a high-level task-prediction policy. Autonomous suturing is a key milestone
toward achieving robotic autonomy in surgery. These contributions support repro-
ducible evaluation and development of precision-focused, long-horizon dexterous
manipulation policies necessary for end-to-end suturing. Dataset is available at:
Hugging Face.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://huggingface.co/datasets/jchen396/suturebot


1 Introduction & Related Work

Robotic systems have increasingly demonstrated their potential in enhancing precision, reducing pro-
cedural variability, and automating complex tasks across diverse domains, including manufacturing,
domestic environments, and healthcare. Within these fields, highly dexterous tasks and generalizable
automation remain particularly challenging. Robotic suturing stands out as a paradigmatic example
due to its stringent requirements for precision, dexterity, and adaptability to deformation and manip-
ulation uncertainties. Mastering autonomous suturing is a key milestone before automating more
complex procedures.

Clinical platforms such as the Da Vinci (Intuitive Surgical, Sunnyvale CA) have shown substantial
utility in robotic surgery, offering precise control and enhanced dexterity. However, they rely on
continuous surgeon input and face limitations including operator fatigue, human error, and variability
in outcomes. The da Vinci Research Kit (dVRK) [11], a widely used research variant, inherits the
core capabilities of the clinical system, high-precision control and an intuitive teleoperation interface,
while providing a reproducible platform for academic research and experimentation.

Various control methodologies have been explored to achieve differing levels of robotic autonomy
in suturing. Hybrid approaches combine motion planning, computer vision, mechanical guides,
and predictive modeling. The Smart Tissue Autonomous Robot (STAR) system autonomously exe-
cuted precise suture placements for small-bowel anastomosis under surgeon supervision, leveraging
advanced computer vision strategies and a specialized suturing tool [26]. Suture Needle Angular
Positioner (SNAP) [28] and Suture Throws Including Thread Coordination and Handoffs (STITCH)
[9] have also employed mechanical guides and sequential convex optimization for accurate suture
throws. Knoll et al. [15] utilized scaffolded learning to achieve knot tying for suturing on a real robot.
Although these approaches achieve high precision, they often struggle with generalization and error
recovery, and have yet to be demonstrated on an end-to-end suturing procedure. Model Predictive
Control (MPC) represents another prominent approach, wherein task-specific models optimize robot
actions at each timestep. MPC has successfully demonstrated autonomous suture placement on the
dVRK [19]. However, MPC often lacks the flexibility to adapt to unpredictable tissue interactions
without extensive modeling and has not been used for needle pickup or knot tying during suturing.

Imitation Learning (IL), alternatively, has gained attention due to its ability to learn tasks directly from
human demonstrations, offering robust recovery and adaptability. Low-level IL policies target discrete
tasks: ACT learns compact action chunks via a transformer backbone to mitigate compounding errors
in fine motions [37]; π0 leverages a pretrained vision-language model with a flow-matching action
expert to generate precise continuous actions [3]. Research into learning individual suturing tasks has
led to progress in areas such as needle lifting and handling [16, 32], handover [5], extraction [31],
and knot tying [12]. While each of these subtasks has seen successful demonstrations, executing
the complete suturing process autonomously continues to be an unsolved problem. These policies
achieve high success rates on individual steps but do not address long-horizon sequencing or the
precision required for suturing.

For long-horizon coordination, high-level hierarchical frameworks have been proposed. SRT-H
uses language-conditioned low-level policies sequenced by a high-level policy to complete ex vivo
cholecystectomy procedures [13], but tasks are notably less-dexterous than those needed for suturing.
SurgicAI introduces a language-conditioned planner to orchestrate grasp, insert, and handoff tasks
and benchmarks multiple IL and RL methods on end-to-end suturing with a 50% success rate [33],
however this was only demonstrated in simulation. To address long-horizon coordination in generalist
robotic policies, π0.5 extends π0 by using multi-modal data and co-training to achieve long-horizon
behaviors, such as laundry folding and box assembly, with robustness to disturbances [10]. However,
π0.5 and recent generalist IL policies that demonstrate the advanced multi-task and long-horizon
capabilities required in end-to-end suturing, are trained on 1 million+ trajectories of generalist robotic
tasks [6, 3, 20, 14].

Yet, autonomous suturing lacks this quantity of demonstration data to fully realize the recent advances
in IL architectures and pretraining. Current publicly available datasets comprised of tabletop tasks
using the dVRK system are on the magnitude of a few hundred trajectories [24, 34]. However,
datasets specific to autonomous end-to-end suturing total less than 200 trajectories when combined
[8, 33]. This data availability greatly limits advancements in solving this canonical surgical task in
the real world. As a result, full end-to-end suturing has yet to be demonstrated outside of simulation.
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Figure 2: Experimental setup showing the Da Vinci Research Kit (dVRK), remote center of motion
fixture, and suture pad. The robot, suture pad, and task utilized for data collection was selected to
allow others to reproduce the benchmark. All data is collected on wound one of the suture pad, while
wounds two through six are used for generalization testing.

Additionally, there are no established benchmark for the surgical robotics field to track progress in
this important autonomous task, nor are there reproducible metrics to assess the level of precision
beyond the traditional coarse measure of task completion, which is crucial for downstream clinical
significance. To address these gaps and build a foundation for future research, we present a precision-
focused IL approach for end-to-end suturing and introduce:

• A new dexterous benchmark, featuring a long-horizon suture task for evaluating IL policies
in a surgical environment.

• The largest public real-world suturing dataset, comprising 1890 high-fidelity dVRK
demonstrations for reproducible research.

• A goal-conditioned IL framework that enables learned policies to achieve precision-
targeted insertion outcomes.

• A comprehensive evaluation of state-of-the-art VLA models on our benchmark, establish-
ing a performance baseline for future research.

2 Methods

2.1 Dataset and Task Description

System Setup Our data-collection setup is shown in Fig. 2. We use the da Vinci Research Kit
(dVRK) Si version [35], a widely available research variant of the clinical Da Vinci system. A Soft
Tissue Suture Pad (3-D Med, OH) serves as the task surface, and we use a green braided polyester
suture (3-0 Ethibond, Ethicon, NJ). All sutures are performed on the region identified in Fig. 2.

A 3D-printed trocar cage maintains the fixed remote centers of motion (RCMs); the corresponding
STL file is included in the dataset. We equip the dVRK with DeBakey forceps on the left arm and
a large needle driver on the right. Wrist cameras (5.5 mm borescope, Takmly, China) are mounted
35 mm from each wrist via 3D-printed fixtures (STL file in dataset). An absorbent pad beneath the
suture pad and RCM fixture provides a consistent background. During collection, we record images
at 30 Hz synchronized with robot kinematics.

Task Description Suturing is a fundamental surgical task involving the precise placement of a
needle and thread to join tissue, promote healing, and achieve hemostasis. One common approach is
the interrupted stitch, where the needle is passed through both sides of the tissue to be connected, the
suture is tied securely, and the excess thread is trimmed.

We decompose suturing into three tasks, following the task breakdown used in SRT [12]. Examples
are shown in Fig. 3. Needle pickup begins with both grippers positioned above the wound and the
needle resting on the pad. The left gripper grasps the needle near its tip, then hands it off to the right
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Figure 3: The suturing procedure is broken into three tasks, needle pickup, needle throw, and knot tie.
These task discretizations were then utilized for data collection, policy training, and evaluation.

gripper, which grasps near the base, with the curve of the needle oriented away from the endoscope
camera. Needle throw uses the right gripper to drive the needle through the back wall of the wound,
rotate it, and pass it through the front wall. Once sufficient suture emerges, the right gripper releases
the needle, repositions to grasp the protruding suture, and pulls it straight through. Once the needle is
free of the suture pad, it is pulled straight up, drawing suture material through before returning to
home. Knot tying is performed by the right gripper wrapping the suture clockwise around the left
gripper. The left gripper then opens slightly, grasps the loose end of the suture and pulls to the left
while the right gripper pulls the needle to the right to tighten the knot.

Data Collection and Dataset Composition We collect demonstrations for three tasks that comprise
the suturing procedure, needle pickup, needle throw, and knot tying, as well as corresponding recovery
demonstrations, where the task begins from a failure state and proceeds to successful completion.
These recovery demonstrations are inspired by the DAgger [25] framework, where an initial policy
trained on expert demonstrations is deployed to identify common failure modes. We then collect
additional demonstrations that start from these failure states, showing how to recover and complete
the task. This approach increases the diversity of the training data and helps the policy generalize
beyond ideal conditions. It also improves robustness by explicitly teaching the model how to recover
from suboptimal states that are likely to occur during real-world deployment.

After data collection, we manually annotate each needle throw demonstration with insertion and exit
points on the final frame using a GUI. These annotations are stored as x and y image coordinates
in CSV files in each demonstration episode and are later used as goal conditions for training and
evaluation.

In total, we collected 1,890 demonstrations, including 454 recovery examples. This dataset comprises
628 demonstrations for needle pickup (148 recoveries), 310 for needle throw (96 recoveries), and
952 for knot tying (210 recoveries). All demonstrations were collected using the standard dVRK
teleoperation console, allowing fine-grained manual control of both arms.

Each demonstration includes synchronized visual and kinematic data. We record robot kinematics
in structured CSV files at each timestamp. These logs include 6-DOF Cartesian poses (position
and quaternion) of both end-effectors, measured jaw opening angles, desired Cartesian poses and
joint angles, and the pose of each remote center of motion (RCM) frame. Additionally, we capture
RGB images from the stereo endoscope and two wrist-mounted cameras. Wrist cameras record at a
resolution of 640× 480 at 30 Hz, and the stereo endoscope records at 960× 540 at the same frame
rate.

To improve policy robustness and generalization, we introduce variation across demonstrations. This
includes differences in robot joint configurations, RCM positions within the fixture, the placement
and orientation of the suture pad, the initial pose of the needle, and slight perturbations to the wrist
camera mounts. These variations ensure a diverse set of trajectories and visual scenes across the
dataset.
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Figure 4: To enable a policy to approach targeted points, we utilize goal conditions generated from
target points, which serve as inputs to the model during training and inference. We evaluate three
types of goal conditions; point labels on the endoscope image, an additional image input with masks,
and an additional image input with a distance map.

2.2 Policy Architecture

Architecture Overview We adopted a hierarchical architecture similar to [13, 29, 30], which
is shown in Fig. 1. A high-level policy based on the Swin Transformer [18] encodes the visual
observations into tokens, that are processed by a transformer decoder to generate language instructions.
The low-level policy receives this language instruction, along with the latest wrist and endoscope
images, and the goal conditions, and outputs a chunk of relative robot actions.

For the low-level policy, we compare three state-of-the-art vision-language-action (VLA) models,
π0 [3], GR00T N1 (GR00T) [20], and OpenVLA-OFT (OpenVLA) [14]. These models leverage
vision-language model (VLM) backbones pretrained on internet-scale datasets and have demonstrated
strong performance on a wide range of general-purpose manipulation tasks. The π0 and GR00T N1
models represent strong VLA generalist policies, whose flow-matching action prediction heads and
foundational pretraining have been demonstrated to enhance downstream finetuning tasks [3, 20].
OpenVLA-OFT differs from these approaches by leveraging parallel decoding for action prediction,
which when coupled with L1 regression and FiLM conditioning [22] earn it SOTA performance on
the LIBERO simulation benchmark [17]. In addition, we include a language-conditioned Action
Chunking Transformer (ACT) as a baseline. Unlike the VLA models, ACT does not rely on a
pretrained vision-language model (VLM) backbone, and therefore serves as a non-VLA reference
point for comparison. The use of language conditioning allows ACT to be trained on multiple tasks
within a single model, in contrast to prior work such as SRT [12], which required training separate
models for each task. This multitask formulation facilitates smoother transitions between tasks and
supports a unified low-level policy for the entire suturing procedure. We attempted to apply this
language conditioned approach to Diffusion Policy (DP) [4], however, we encountered challenges in
achieving reasonable performance with our implementation, leading to its exclusion from the final
comparison.

Further implementation details are provided in the appendix.

Training We reserve an evaluation set of two demonstrations per task and its corresponding recovery
(12 demos total). Models trained with L1 regression, ACT and OpenVLA-OFT, are trained for at least
10,000 steps. However, models trained with MSE, π0 and GR00T N1, often require much fewer steps
due to a propensity to overfit. Each final checkpoint is selected according to the lowest evaluation
loss achieved before overfitting is observed. Additional training hyperparameters are detailed in the
appendix. All training is conducted on an NVIDIA DGX A100 system with 8x A100 80 GB GPUs.

2.3 Goal Representations

Goal conditioning has been established in prior works, such as RoboPoint [36] and more recently
with AimBot [7], which are used to boost task success rates, but have yet to be demonstrated for
measured precision control of IL policies. We explore three goal condition formats to guide needle
placement (Fig. 4). Point labels: The endoscope image is overlaid with an opaque blue pixel at the
insertion point and an opaque green pixel at the exit point. Binary masks: A three-channel image,
where channel 2 represents the insertion mask, channel 3 the exit mask, and channel 1 is all zeros.
Distance maps: A three-channel image, where the first two channels encode normalized pixel-wise
offset vectors (dx, dy) pointing toward the insertion point, and the third channel is a scalar heatmap
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Figure 5: Ultraviolet (UV) marks were utilized to measure the accuracy of the policy. After marking
the wound, the target points were selected in the endoscope view using a UV light. During execution,
the UV light was off and the marks were invisible. After the task, the UV light was turned on and the
distance from the suture to the mark was measured.

with intensity highest at the insertion point and lowest at the exit point. Binary masks and distance
maps are passed to the low-level policy as separate inputs, while point labels directly modify the
endoscope image. No Goal: Policies without explicit goal conditions rely solely on the distribution
of insertion points in the training data. We include this baseline to quantify the error attributable to
this distribution, distinguishing it from policies that explicitly learn to reach specified goals.

3 Evaluation and Results

Our evaluation aims to address four key questions:

• Which goal–conditioning representation yields the highest precision for suturing?
• How do state-of-the-art IL models perform on the SutureBot benchmark?
• How does pretraining affect policy performance?
• How well does this approach generalize to previously unseen scenarios?

3.1 Metrics

Needle Pickup: A pickup trial was considered successful if the left gripper first grasps the needle
and the right gripper subsequently secures it. Trials exceeding 120 s are marked as failures.

Needle Throw: While needle throw and pull through are trained as one task, for evaluation it was
broken up into two sub-tasks, throw and pull through. A throw trial succeeds if the needle penetrates
the back wall and then the front wall of the wound within 120 s. If the model was able to pull the
needle free from the tissue and return to the home position within 60 s it was considered a successful
pull through sub-task.

Knot Tie: A knot-tying trial was successful if the right gripper wraps the suture clockwise around the
left gripper, and the left gripper grasps and tightly pulls the loose end through the loop within 120 s.

Insertion and Exit Error: To evaluate precision, we used invisible ultraviolet (UV) markers. Before
execution, the target insertion and exit points on the pad were marked using a UV pen as shown in
Fig. 5. The suture pad was then illuminated with a UV light under the endoscope camera, allowing
the digital target points to be selected. These target points were used to generate the goal condition
which was passed to the policy. After completion, the pad was re-illuminated with a UV light and
ImageJ [27] was used to measure the Euclidean distance between the intended UV marks and the
actual suture insertion/exit points which define the insertion and exit errors. If the throw task failed,
but the policy completed at least one puncture, the measurement for that puncture is still included.

Procedure Time: Total time reported for each procedure was calculated by adding the recorded time
from all successful tasks in the procedure to the maximum time for each failed task as defined above.
Time is marked as not available (NA) if the policy failed to complete any tasks.

3.2 Ablation Studies

We evaluated each policy in a fixed robot configuration with consistent suture pad placement and
varying needle position. All models were evaluated on a dual NVIDIA RTX 4090 workstation. Each
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policy executes ten full suture procedures, with individual task successes and errors recorded. If a
task fails, the system is manually reset before the next task.

Goal Condition Representation We fine-tune π0 and train multitask ACT using four goal condition
formats: point labels, binary masks, distance maps, and no conditioning. Table 1 summarizes their
performance on the throw task along with precision metrics. All goal-conditioned variants appear to
improve accuracy compared to the no-goal baselines, with point labels achieving the lowest average
error of 1.3 mm for ACT and 1.0 mm for π0.

For statistical analyses, we used the Real Statistics Resource Pack in Microsoft Excel (Release 9.1.1;
2024, Charles Zaiontz). We compared the Point Label goal conditioning method against Distance Map,
Mask, and no goal separately for the ACT and π0 policies. We used non-parametric Mann-Whitney U
tests for accuracy and Brown-Forsythe tests for precision, both with a Bonferroni-corrected threshold
(α = 0.0167). For ACT, Point Label was significantly more accurate than Distance Map (p = 0.010)
and Mask (p = 0.009), and more precise than Mask (p = 0.009) and no goal (p = 0.013). For π0,
point label was significantly more accurate than Distance Map (p = 0.010) and no goal (p = 0.002),
and more precise than no goal (p = 0.007). Overall, Point Label demonstrated the most consistent
benefits for improving policy accuracy and precision, especially for ACT. As a result, all subsequent
policy evaluations use the point-label representation.

Table 1: Success rates and precision results for different goal conditions on the suturing procedure.
Error results reported in Avg±Std mm.

Policy Throw Pull
Through

Insertion
Error (mm)

Exit Error
(mm) Time (sec)

ACT + Point Label 9/10 7/10 1.3±0.9 2.0±1.3 70±17
ACT + Distance Map 8/10 8/10 2.6±1.5 2.2±1.8 76±16
ACT + Mask 10/10 4/10 2.9±1.7 3.0±1.0 91±19
ACT (no goal) 10/10 9/10 3.2±2.2 3.6±1.8 72±14
π0 + Point Label 6/10 2/10 1.0±1.3 2.4±1.6 129±48
π0 + Distance Map 8/10 1/10 2.1±1.1 2.3±0.9 124±8
π0 + Mask 6/10 4/10 1.8±1.2 2.1±1.2 134±27
π0 (no goal) 8/10 3/10 3.9±2.5 3.7±2.5 130±30

Low-Level Policy Comparison We finetune π0, GR00T N1, OpenVLA-OFT, and train multitask
ACT on the SutureBot dataset and evaluate their capabilities as low-level policies. Table 2 reports the
success rates and mean insertion/exit errors for each model. For individual task completion, ACT
performs the best, followed by π0. ACT also completed 3/10 sutures end-to-end, with no manual
intervention between tasks, while also having the best insertion error with an average of 1.5±0.8 mm
followed closely by π0 with 1.9±1.0 mm. We performed statistical analyses using a 4x2 Chi-squared
test, which showed a highly significant overall difference (p = 8.4e− 14). Post-hoc analysis involved
pairwise one-tailed Fisher’s Exact tests comparing the best model (ACT) against the others, using a
Bonferroni-corrected threshold (α = 0.0167). Results showed ACT performed significantly better
than GR00T N1 (p = 8.8e− 9), and OpenVLA-OFT (p = 2.1e− 12), but not significantly better
than π0 (p = 0.018).

Table 2: Success rates and precision results of the evaluated models on the suturing procedure. Error
and time results reported in Avg±Std.

Policy Pickup Throw Pull
Through

Knot
Tie

Insertion
Error
(mm)

Exit
Error
(mm)

Time
(sec)

End-
to-

End

ACT 9/10 8/10 4/10 9/10 1.5±0.8 2.6±1.2 182±58 3/10
π0 7/10 7/10 3/10 4/10 1.9±1.0 3.2±2.3 348±45 0/10
GR00T 1/10 2/10 1/10 1/10 2.3±1.2 2.9±0.6 388±67 0/10
OpenVLA 0/10 0/10 0/10 0/10 NA±NA 2.8±NA NA 0/10
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High-Level Policy and Pretraining Evaluation The high-level policy achieved an F1 score of 0.92
and accuracy of 88.73% for task prediction during offline validation. It also achieved 100% F1 score
and accuracy in detecting task transitions, indicating reliable classification of the overall procedure
into discrete subtasks. A more detailed confusion matrix is shown in the appendix. To further assess
its effectiveness, we conduct an oracle comparison in which a human operator manually provides
language conditions to the low-level policy, replacing the high-level policy for direct evaluation (π0

Oracle and ACT Oracle).

For pretraining evaluation, we compare three configurations of the best-performing VLA policy, π0:
(1) the standard π0 checkpoint used in other fine-tuning evaluations, (2) a variant post-trained on
20,000 predominantly cholecystectomy trajectories from SRT-H (π0 Chole) [13], and (3) a version
initialized from scratch with the backbone VLM from a standard PaliGemma checkpoint [2] (π0

Scratch). All models were then fine-tuned on the SutureBot dataset prior to evaluation. Results,
summarized in Table 3, indicate that π0 and π0 Chole achieved comparable task success rates, with
π0 showing a slight advantage in insertion error. The oracle results closely matched those of π0,
suggesting the high-level policy performed comparably to a human operator in directing the low-level
policy.

Table 3: Success rates and precision results of π0 pretraining checkpoints on the suturing procedure
along with an oracle evaluation of the high-level policy. Error and time results reported in Avg±Std.

Policy Pickup Throw Pull
Through

Knot
Tie

Insertion
Error
(mm)

Exit
Error
(mm)

Time
(sec)

End-
to-

End

ACT 9/10 8/10 4/10 9/10 1.5±0.8 2.6±1.2 182±58 3/10
ACT Oracle 7/10 7/10 5/10 10/10 1.8±0.8 2.6±1.1 207±48 2/10
π0 7/10 7/10 3/10 4/10 1.9±1.0 3.2±2.3 348±39 0/10
π0 Oracle 3/10 9/10 3/10 7/10 1.3±0.4 3.1±2.1 313±51 0/10
π0 Chole 4/10 4/10 0/10 5/10 2.2±0.7 3.5±1.6 342±66 0/10
π0 Scratch 6/10 2/10 2/10 1/10 3.7±3.6 3.9±1.0 364±42 0/10

3.3 Generalization

We evaluated the best and next best-performing policy’s ability to generalize by testing on wound
geometry not included in the training data. Fig. 2 shows the 3-D Med suture pad with wound types
one through six labeled. Wound one was used in the training data while wounds two through six
were excluded. We then evaluated the policies under modified lighting conditions by using an darker
external lamp for lighting the scene from the side instead of the direct bright endoscope light. Lastly,
we tested the policies using a different tool set than was in the training data by switching the left
DeBakey forceps and right Large Needle Driver. Table 4 summarizes the policy’s performance
results on all three generalization conditions. The results of π0 on unseen wound types are extremely
comparable to those on the trained wound, while ACT has a noticeable performance drop. Success
rates drop further with the new lighting and tool configurations for both ACT and π0.

4 Discussion

Goal Condition Representation Evaluating multiple goal conditioning methods, we find that
overlaying the original endoscope image with opaque point labels yields the lowest insertion error
and variance for the needle throw sub-task, though exit error remains comparable across non-baseline
methods. This may result from a shared limitation: all models lack historical context, leading to
uncertainty when the needle is obscured within the tissue. This underscores the challenge of achieving
high exit precision, where initial positioning and entry angles significantly constrain the possible exit
points.

Interestingly, models trained with point labels tend to align the needle more carefully as they approach
the target, often displaying deliberate, hesitant motions during insertion. This suggests better spatial
awareness and fine-grained control. In contrast, models conditioned on distance maps or binary
masks complete the task more quickly but with reduced accuracy. This discrepancy may arise from

8



Table 4: Success rates and precision results on unseen wound types. "on (1)" are the results from the
wound used during training. "on (2-6)" are the results from wound types not included in the training
data. Fig. 2 shows wounds one through six on the suture pad. "Lighting" are the results with alternate
lighting from the training set and "Tools" are results with alternate tools from the training set. Error
results reported in Avg±Std.

Scene Change Pickup Throw Pull
Through

Knot
Tie

Insertion
Error
(mm)

Exit
Error
(mm)

Time
(sec)

End-
to-

End

ACT (1) 9/10 8/10 4/10 9/10 1.5±0.8 2.6±1.2 182±58 3/10
ACT (2-6) 5/10 6/10 2/10 5/10 1.2±0.8 2.5±1.3 276±95 0/10
ACT Lighting 3/10 5/10 7/10 4/10 2.2±0.9 2.7±0.9 349±53 0/10
ACT Tools 1/10 9/10 1/10 2/10 1.1±0.5 2.6±0.6 327±22 0/10
π0 on (1) 7/10 7/10 3/10 4/10 1.9±1.0 3.2±2.3 348±39 0/10
π0 on (2-6) 5/10 6/10 0/10 8/10 2.0±1.5 2.5±1.1 293±57 0/10
π0 Lighting 0/10 5/10 0/10 2/10 2.7±2.2 4.1±2.6 402±28 0/10
π0 Tools 1/10 5/10 0/10 3/10 3.1±1.3 4.8±1.1 383±48 0/10

the added cognitive load of integrating a separate input (mask or map) with the endoscopic view,
whereas point overlays directly embed the goal representation within the task image, providing a
more explicit and intuitive target.

Low-Level Policy Comparison Of the evaluated low-level policies, ACT achieves the highest task
completion rate, as well as suture throw precision matched only by π0. We attribute this advantage
partially to the dataset being smaller and relatively uniform data which smaller policies like ACT
may benefit from. Although policies like π0 may be able to leverage pretraining to finetune for this
task, the nature of the task and dVRK being significantly different from π0’s pretraining potentially
limit pretraining advantages. Due to similarities in architecture, the performance advantage that π0

offers over GR00T N1 can likely be attributed to the former’s pretraining that emphasized bimanual
manipulators that more closely resemble the dVRK platform compared to the latter whose pretraining
focused on humaniods with more degrees of freedom.

Pretraining Evaluation In Table 3, we show that while the baseline model fine-tuned from π0’s
public checkpoints slightly outperforms other pretrained variants in average task completion, the
results do not clearly differentiate in-domain benefits across the various pretraining mixtures. It
is noted that the π0 from scratch policy only had a small performance drop compared to π0 from
checkpoint, which supports the idea that this task and embodiment are significantly different from π0

pretraining, limiting its benefit. Finally, pretraining did reduce time to convergence, with π0 Scratch
requiring more training time than the baseline, and π0 Chole converging the fastest.

High Level Policy To evaluate the impact of high-level policy on overall execution, we compare
π0 and multitask ACT (which uses the high-level policy) to an oracle variant with human-selected
subtasks. As shown in Table 3, the high-level and oracle variants achieve similar success rates, timing,
and precision, across both ACT and π0, indicating that the high-level policy provides sufficiently
accurate subtask predictions. These results suggest that the high-level policy is not a performance
bottleneck and enables effective multitask execution in autonomous suturing.

Generalization One advantage of IL, particularly vision-language-action (VLA) models like π0, is
their ability to generalize to unseen environments, a common challenge for traditional model-based
approaches. In our experiments, the π0 policy performed consistently across wounds with varying
thickness and geometry, similar to its performance on the training set wound. ACT had a noticeable
drop in performance on the wound set and both policies were significantly worse on the alternate
tools and lighting sets. While even with a simple dataset, there is some generalization ability, this
highlights the importance of a diverse dataset especially when using IL for surgical applications,
where the suturing environment can vary significantly.
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5 Limitations

This work has several limitations. First, the number of trials per experiment is limited to 10 due to
time constraints. While this is sufficient for identifying clear trends, more subtle effects, such as
those observed in pretraining evaluations, may benefit from larger sample sizes. High-level policy
evaluations were limited to offline and Oracle evaluations. This manuscript focused on evaluating the
low-level policies, but future work should include more discrete online evaluations of the high-level
policy. While our framework shows some ability to generalize to variations in suture pad wound
types, performance drops under light and tool changes and is likely to degrade further under more
novel conditions (e.g., different pad materials, phantom blood, real tissue), highlighting the need
for more diverse training data to improve generalization. Our pipeline currently relies on manual
target-point selection, which will need to be automated for full autonomy, as was demonstrated in
[26]. Although our clinical post-training did not significantly improve performance in this work, this
remains a promising area for future research, as generalist robotic foundation models [10, 20, 14]
have demonstrated strong downstream transfer when aligned with their training domain. Our dataset
will also be useful in training and developing these foundation models or pretraining for other
dual-armed robots. As a first step towards automating suturing, we focus on simple success and
error metrics, however, in future work clinical metrics such as bite depth, tissue trauma, and suture
tension will need to be considered to improve clinical relevance. Finally, while this dataset and
benchmark was designed to foster end-to-end autonomous suturing advancement, only ACT achieved
end-to-end success in 3 trials without human operator input. We aim to address this, as well as the
other limitations discussed in future work by investigating alternative architectures, pretraining, and
expanding the dataset. Expanding the dataset scale and including more diversity will help determine
whether the performance bottleneck is due to dataset size or policy architecture.

6 Societal Impact

An estimated 67% of the world’s population lacks access to surgical care [1]. Even in countries
like the United States, with relatively high surgical access, an aging population is expected to create
a shortage of 10,100 to 19,900 surgical specialists by 2036 [23]. Increased autonomy in robotic
surgical systems could help address these shortages by expanding the capacity of the existing surgical
workforce. Robotic-assisted surgery (RAS) has already been shown to reduce healthcare costs
and patient length of stay [21], but current RAS systems offer limited autonomy. Our work aims
to support future advances in autonomous systems that could further improve surgical efficiency
and outcomes. However, the methods and benchmarks presented in this work also carry the risk
of premature exploration of surgical automation without sufficient regard for safety and ethical
considerations. We emphasize that this is exploratory research, with performance well below that of
expert surgeons. Significant additional work is required to improve accuracy and carefully assess the
ethical implications before deployment in clinical settings.

7 Conclusion

We have introduced the largest publicly available autonomous, end-to-end suturing dataset and
benchmark on the widely used dVRK platform, and demonstrated that current VLAs finetuned on
SutureBot can achieve each individual task, but lack the consistency to reliably demonstrate complete
end-to-end suturing examples. Additionally, we find that VLAs augmented with goal conditioning can
achieve a mean insertion error of 1.0±1.3mm. Our goal-conditioned IL framework provides a 59%-
74% improvement in suturing precision over baseline, and our public benchmark and high-fidelity
dataset enable reproducible progress in precise, long-horizon, and dexterous manipulation.

Acknowledgments and Disclosure of Funding

This material is based on work supported by NIH R56EB033807 and ARPA-H AY1AX000023. We
would also like to thank NVIDIA for sharing computational resources for training the policies.

10



References
[1] Blake C. Alkire, Nakul P. Raykar, Mark G. Shrime, Thomas G. Weiser, Stephen W. Bickler,

John A. Rose, Cameron T. Nutt, Sarah L. M. Greenberg, Meera Kotagal, Johanna N. Riesel,
Micaela Esquivel, Tarsicio Uribe-Leitz, George Molina, Nobhojit Roy, John G. Meara, and
Paul E. Farmer. Global access to surgical care: a modelling study. The Lancet Global
Health, 3(6):e316–e323, jun 2015. doi: 10.1016/S2214-109X(15)70115-4. URL https:
//doi.org/10.1016/S2214-109X(15)70115-4.

[2] Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello,
Thomas Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey
Gritsenko, Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra,
Matthias Bauer, Matko Bošnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica,
Ivana Balazevic, Joan Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut,
Jeremiah Harmsen, and Xiaohua Zhai. Paligemma: A versatile 3b vlm for transfer, 2024. URL
https://arxiv.org/abs/2407.07726.

[3] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

[4] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ
Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.
The International Journal of Robotics Research, page 02783649241273668, 2023.

[5] Zih-Yun Chiu, Florian Richter, Emily K Funk, Ryan K Orosco, and Michael C Yip. Bimanual
regrasping for suture needles using reinforcement learning for rapid motion planning. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pages 7737–7743. IEEE,
2021.

[6] Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Mad-
dukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
atsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg,
Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon
Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le,
Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan,
Christopher Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny
Driess, Daphne Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry
Kalashnikov, Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei
Xia, Feiyu Zhao, Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam
Salhotra, Ge Yan, Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang,
Guanzhi Wang, Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I
Christensen, Hiroki Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha,
Igor Mordatch, Ilija Radosavic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim,
Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey
Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan
Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik,
João Silvério, Joey Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador,
Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman,
Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento
Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty
Ellis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng,
Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam
Tan, Linxi "Jim" Fan, Lionel Ott, Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert, Marius
Memmel, Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Castro, Max Spero, Maximilian
Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu Ding, Minho Heo, Mohan Kumar
Srirama, Mohit Sharma, Moo Jin Kim, Muhammad Zubair Irshad, Naoaki Kanazawa, Nicklas
Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur

11

https://doi.org/10.1016/S2214-109X(15)70115-4
https://doi.org/10.1016/S2214-109X(15)70115-4
https://arxiv.org/abs/2407.07726


Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi,
Patrick "Tree" Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano,
Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov,
Ran Tian, Ria Doshi, Roberto Martín-Martín, Rohan Baijal, Rosario Scalise, Rose Hendrix, Roy
Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian,
Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar Bahl,
Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun Xu, Siddhant Haldar,
Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan
Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae
Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya
Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao,
Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vincent Vanhoucke,
Vitor Guizilini, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao
Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang
Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen
Zhang, Zipeng Fu, and Zipeng Lin. Open x-embodiment: Robotic learning datasets and rt-x
models, 2025. URL https://arxiv.org/abs/2310.08864.

[7] Yinpei Dai, Jayjun Lee, Yichi Zhang, Ziqiao Ma, Jed Yang, Amir Zadeh, Chuan Li, Nima
Fazeli, and Joyce Chai. Aimbot: A simple auxiliary visual cue to enhance spatial awareness of
visuomotor policies. arXiv preprint arXiv:2508.08113, 2025.

[8] Yixin Gao, S Swaroop Vedula, Carol E Reiley, Narges Ahmidi, Balakrishnan Varadarajan,
Henry C Lin, Lingling Tao, Luca Zappella, Benjamin B’ejar, David D Yuh, et al. Jhu-isi
gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion
modeling. In MICCAI workshop: M2cai, volume 3, page 3, 2014.

[9] Kush Hari, Hansoul Kim, Will Panitch, Kishore Srinivas, Vincent Schorp, Karthik Dharmarajan,
Shreya Ganti, Tara Sadjadpour, and Ken Goldberg. Stitch: Augmented dexterity for suture
throws including thread coordination and handoffs. In 2024 International Symposium on
Medical Robotics (ISMR), pages 1–7. IEEE, 2024.

[10] Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny
Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0.5: a vision-
language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,
2025.

[11] Peter Kazanzides, Zihan Chen, Anton Deguet, Gregory S Fischer, Russell H Taylor, and
Simon P DiMaio. An open-source research kit for the da vinci® surgical system. In 2014 IEEE
international conference on robotics and automation (ICRA), pages 6434–6439. IEEE, 2014.

[12] Ji Woong Kim, Tony Z Zhao, Samuel Schmidgall, Anton Deguet, Marin Kobilarov, Chelsea
Finn, and Axel Krieger. Surgical robot transformer (srt): Imitation learning for surgical tasks.
arXiv preprint arXiv:2407.12998, 2024.

[13] Ji Woong Kim, Juo-Tung Chen, Pascal Hansen, Lucy X. Shi, Antony Goldenberg, Samuel
Schmidgall, Paul Maria Scheikl, Anton Deguet, Brandon M. White, De Ru Tsai, Richard
Cha, Jeffrey Jopling, Chelsea Finn, and Axel Krieger. Srt-h: A hierarchical framework for au-
tonomous surgery via language conditioned imitation learning. arXiv preprint arXiv:2505.10251,
2025. URL https://arxiv.org/abs/2505.10251.

[14] Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models:
Optimizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

[15] Alois Knoll, Hermann Mayer, Christoph Staub, and Robert Bauernschmitt. Selective automation
and skill transfer in medical robotics: a demonstration on surgical knot-tying. The International
Journal of Medical Robotics and Computer Assisted Surgery, 8(4):384–397, 2012.

12

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2505.10251


[16] Hongbin Lin, Bin Li, Xiangyu Chu, Qi Dou, Yunhui Liu, and Kwok Wai Samuel Au. End-to-
end learning of deep visuomotor policy for needle picking. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 8487–8494. IEEE, 2023.

[17] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone.
Libero: Benchmarking knowledge transfer for lifelong robot learning, 2023. URL https:
//arxiv.org/abs/2306.03310.

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10012–10022,
October 2021.

[19] Pasquale Marra, Sajjad Hussain, Marco Caianiello, and Fanny Ficuciello. Mpc for suturing
stitch automation. IEEE Transactions on Medical Robotics and Bionics, 2024.

[20] NVIDIA, :, Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding,
Linxi "Jim" Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang,
Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu,
Edith Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed,
You Liang Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie,
Yinzhen Xu, Zhenjia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao,
Ruijie Zheng, and Yuke Zhu. Gr00t n1: An open foundation model for generalist humanoid
robots, 2025. URL https://arxiv.org/abs/2503.14734.

[21] Kennedy E. Okhawere, Gediwon Milky, Shirin Razdan, I-Fan Shih, Yanli Li, Laura Zuluaga,
and Ketan K. Badani. One-year healthcare costs after robotic-assisted and laparoscopic partial
and radical nephrectomy: a cohort study. BMC Health Services Research, 23(1):1099, 2023.
ISSN 1472-6963. doi: 10.1186/s12913-023-10111-8. URL https://doi.org/10.1186/
s12913-023-10111-8.

[22] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer, 2017. URL https://arxiv.org/abs/
1709.07871.

[23] GlobalData Plc. The complexities of physician supply and demand: Projections from 2021
to 2036, 2024. URL https://www.aamc.org/media/75236/download. Prepared for the
AAMC by GlobalData Plc. Accessed: 2025-05-15.

[24] Irene Rivas-Blanco, Carlos J. Pérez Del-Pulgar, Andrea Mariani, Giuseppe Tortora, and Anto-
nio J. Reina. A surgical dataset from the da vinci research kit for task automation and recognition.
In 2023 3rd International Conference on Electrical, Computer, Communications and Mecha-
tronics Engineering (ICECCME), page 1–6. IEEE, July 2023. doi: 10.1109/iceccme57830.
2023.10253032. URL http://dx.doi.org/10.1109/ICECCME57830.2023.10253032.

[25] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and
Miroslav Dudík, editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages
627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL https://proceedings.
mlr.press/v15/ross11a.html.

[26] Hamed Saeidi, Justin D Opfermann, Michael Kam, Shuwen Wei, Simon Léonard, Michael H
Hsieh, Jin U Kang, and Axel Krieger. Autonomous robotic laparoscopic surgery for intestinal
anastomosis. Science robotics, 7(62):eabj2908, 2022.

[27] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image to imagej: 25 years
of image analysis. Nature methods, 9(7):671–675, 2012.

[28] Siddarth Sen, Animesh Garg, David V Gealy, Stephen McKinley, Yiming Jen, and Ken Gold-
berg. Automating multi-throw multilateral surgical suturing with a mechanical needle guide
and sequential convex optimization. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 4178–4185. IEEE, 2016.

13

https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2503.14734
https://doi.org/10.1186/s12913-023-10111-8
https://doi.org/10.1186/s12913-023-10111-8
https://arxiv.org/abs/1709.07871
https://arxiv.org/abs/1709.07871
https://www.aamc.org/media/75236/download
http://dx.doi.org/10.1109/ICECCME57830.2023.10253032
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html


[29] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z Zhao, Archit Sharma, Karl Pertsch, Jianlan Luo,
Sergey Levine, and Chelsea Finn. Yell at your robot: Improving on-the-fly from language
corrections. arXiv preprint arXiv:2403.12910, 2024.

[30] Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, et al. Hi robot: Open-ended instruction
following with hierarchical vision-language-action models. arXiv preprint arXiv:2502.19417,
2025.

[31] Priya Sundaresan, Brijen Thananjeyan, Johnathan Chiu, Danyal Fer, and Ken Goldberg. Auto-
mated extraction of surgical needles from tissue phantoms. In 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE), pages 170–177. IEEE, 2019.

[32] Albert Wilcox, Justin Kerr, Brijen Thananjeyan, Jeffrey Ichnowski, Minho Hwang, Samuel
Paradis, Danyal Fer, and Ken Goldberg. Learning to localize, grasp, and hand over unmodified
surgical needles. In 2022 International Conference on Robotics and Automation (ICRA), pages
9637–9643. IEEE, 2022.

[33] Jin Wu, Haoying Zhou, Peter Kazanzides, Adnan Munawar, and Anqi Liu. Surgicai: A
hierarchical platform for fine-grained surgical policy learning and benchmarking. Advances in
Neural Information Processing Systems, 37:63771–63789, 2024.

[34] Zijian Wu, Adam Schmidt, Randy Moore, Haoying Zhou, Alexandre Banks, Peter Kazanzides,
and Septimiu E. Salcudean. Surgpose: a dataset for articulated robotic surgical tool pose
estimation and tracking, 2025. URL https://arxiv.org/abs/2502.11534.

[35] Keshuai Xu, Jie Ying Wu, Anton Deguet, and Peter Kazanzides. Autonomous vision-guided
resection of central airway obstruction. IEEE International Symposium on Medical Robotics
(ISMR)., 2025.

[36] Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan
Murali, Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial
affordance prediction for robotics. arXiv preprint arXiv:2406.10721, 2024.

[37] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

A Technical Appendices and Supplementary Material

14

https://arxiv.org/abs/2502.11534


Table 5: π0 finetuning parameters and variations.

Pretrained ckpt π0 PaliGemma π0 π0 Chole

Training dataset SutureBot SutureBot Chole SutureBot

Learning rate 1e-4 1e-4 1e-4 1e-4
Optimizer AdamW AdamW AdamW AdamW
Adam beta1 0.9 0.9 0.9 0.9
Adam beta2 0.95 0.95 0.95 0.95
Adam epsilon 1e-8 1e-8 1e-8 1e-8
Weight decay 0.1 0.1 0.1 0.1
LR scheduler Cosine Cosine Cosine Cosine
Batch size 128 128 128 128
Gradient steps 7,500 8,000 20,000 6,000
Warmup steps 1,000 1,000 1,000 1,000
Full finetune True True True True
Training chunk size 50 50 50 50
Eval action horizon 20 20 20 20
Training data FPS 30 Hz 30 Hz 30 Hz 30 Hz

Table 6: GR00T N1 finetuning parameters.

Parameter Value

Learning rate 1e-5
Optimizer AdamW
Adam beta1 0.95
Adam beta2 0.999
Adam epsilon 1e-8
Weight decay 0.1
LR scheduler Cosine
Batch size 128
Gradient steps 3,000
Warmup steps 200
Tune vision True
Tune projector True
Tune diffusion head True
Tune LLM False
Training chunk size 16
Eval action horizon 16
Training data FPS 15 Hz
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Table 7: OpenVLA-OFT finetuning parameters.

Parameter Value

Learning rate 5e-5
Optimizer AdamW
Adam beta1 0.9
Adam beta2 0.999
Adam epsilon 1e-8
Weight decay 0.01
LR scheduler MultiStepLR
LR gamma 0.1
Batch size 32
Gradient steps 29,000
Warmup steps 100
Use LoRA True
LoRA rank 32
LoRA dropout 0
Training chunk size 50
Eval action horizon 20
Training data FPS 30 Hz

Table 8: Multitask ACT training parameters.

Parameter Value

Learning rate 5e-4
Optimizer AdamW
Adam beta1 0.9
Adam beta2 0.999
Adam epsilon 1e-8
Weight decay 1e-4
LR scheduler LambdaLR
Batch size 256
Gradient steps 10,000
Warmup steps 500
KL weight 10
Hidden dim 512
Feedforward dim 3200
Train chunk size 60
Eval action horizon 20
Training data FPS 30 Hz
Use FiLM True
Language encoder DistilBERT
Image Encoder EfficientNet-B3
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Table 9: High-Level Policy training parameters.

Parameter Value

Learning rate 4e-4
Minimum LR 1e-5
LR cycle length 25 epochs
Warmup epochs 5
Batch size 16
Weight decay 0.05
Num epochs 2000
Best val epoch 282
Validation interval 10 epochs
Save checkpoint interval 5 epochs
Early stopping interval 300 epochs
Seed 5
Prediction offset 15
History length 4 frames
History step size 30 frames
Cameras used left_img_dir
Image resolution 224 × 224
Backbone model Swin-T
Init weights ImageNet
Freeze backbone until none
Multitask loss weight 0.6
Use complex MLP head True
Selected multitasks dominant_moving_direction
Recovery probability 0.6
Use one-hot subtask labels True
Uniform sampling True
Extra repeated last-frame sampling True
Extra sampling probability 0.15
Add center crop view True
Use global pooled image features True

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are supported by the experimental
results, methods, and included material. The goal conditioning is demonstrated in the experiments.
The dataset and setup description allow for others to replicate our experiment for use as a benchmark.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
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Figure 6: Confusion matrix for the High Level Policy on Validation dataset

Justification: In the limitations section we discuss the limitations, implication, and future work related
to our research.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: Paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper includes references to all policies used, dVRK setup, and all supplies needed
to run the experiment. Details on the setup can be found in the methods and experiments section.
Dataset and code are available with the submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
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Justification: The methods section links to the dataset and code along with descriptions of the robotic
setup.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Details on model setup, training, and hyperparameters can be found in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Associated statistical methods are described in the evaluation and results section. Aver-
ages and standard deviations are used to show how current models perform on our benchmark.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Compute resources are described in the Methods section with additional training details
in the Technical Appendices section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Societal impacts are discussed in the societal impacts section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The datasets and models in this work will only interoperate with the dVRK system. This
platform is prohibited from human use by the Intuitive Foundation that issues these developer kits.
Additionally, the related DaVinci system is a highly regulated medical device whose use is governed
by the FDA.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: External model assets, such as OpenVLA-OFT, π0, and GR00T N1 are properly credited
and used responsibly under their MIT, Apache 2.0, and Apach 2.0 licenses, respectively. Remaining
assets covered in this paper are owned by the authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The new dataset provided in this paper is documented in the methods section along with
the HuggingFace reference.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

22

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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